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Optimal and Suboptimal Design of SAW Bandpass 
Filters  Using  the  Remez Exchange Algorithm 

Alexander S. Rukhlenko, Member, IEEE 

Abstract-Optimal and  suboptimal  design  techniques of surface 
acoustic wave (SAW) linear  phase  filters  both  based  on  the  Remez 
exchange  algorithm and  the  McClellan’s  computer  program  are 
considered. The optimal synthesis provides  uniquely  the  best fit to 
a design target, but its  major  drawback is an  excessive amount 
of computations. The  suboptimal synthesis technique  proposed 
allows  a  considerable reduction of the  amount of computations 
without  significant  sacrificing  of  the  approximation accuracy. 
Thus  computer  runtime  and  storage are greatly  saved if com- 
pared to the  optimal synthesis. The detailed suboptimal  theory 
and  some  practical design  aspects are also  discussed. The  design 
examples  are  presented  which  confirm  the  efficiency  and  the 
flexibility  of  the synthesis techniques  proposed. 

S 
I. INTRODUCTION 

EVERAL  surface  acoustic  wave  (SAW) filter synthesis 
techniques  based  on  the  finite  impulse  response  (FIR) 

digital filter theory [ 1 ] have  been  proposed in the  past [2]-[ 151. 
The  most wide  spread  are: 1) the  windowing  techniques 
[2]-[6], 2 )  the linear  programming  techniques  [7]-[IO],  and 
3) the Remez  exchange  algorithm  techniques [ l  l]-[15]. A 
comprehensive  review of these may  be found  elsewhere [ 161. 

However, up to now  there  have  been some  problems  in 
applying  these  techniques to a  SAW filter design.  That is why 
this is a  common  practice  to-use  some design  simplifications, 
sometimes  without sufficient foundations.  For  example, it is 
usually supposed  that  within a filter passband a contribution 
Fl(w) of  an unapodized  interdigital  transducer (IDT) to the 
overall filter transfer  function F ( w )  = FI(w)F2(w) is neg- 
ligible, i.e., Fl(w) z 1. Then  the filter frequency  response 
(FR) F(w) E F*(w) depends  on the function Fz(w) only,  and 
consequently  within  the  limits of the  &function  model [22], 
[23]  a SAW filter  synthesis  becomes  equivalent  to a FIR  digital 
filter synthesis [l]. Unfortunately.  this  is  the  only  case  for  the 
techniques  above  to be applied  without  any  adaptations. 

Further,  while in the  passband,  the roll-off of the  overall 
function F ( w )  due  to the frequency  response Fl(w) might 
easily be compensated by the  proper  predistortion of the 
desired  magnitude  function Fo(w), this is not the  case  in 
the filter stopband  where the function F l ( w )  is  usually  sign 
alternated. 

I t  is yet  shown in this paper how an  original  SAW filter 
FR approximation  problem  may be converted to an  auxiliary 
one by  the proper  modifying of  both a  desired  magnitude 
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function Fo(w) as well as a weight function I.t’(,(w). The 
auxiliary  approximation  problem is solvable by means of 
standard  linear  Chebyshev  approximation  techniques using  the 
Remez  exchange  algorithm by virtue of the  McClellan’s  com- 
puter  program [l81  for  example. In addition  to  the  frequency 
response F ~ ( c J ) .  both an element  factor (241-(261 and/or a 
multistrip  frequency  response [23] might  also be accounted 
for if necessary. 

The  optimal  synthesis  uniquely  provides the best fit to 
a design  target, but its  major  drawback is a considerable 
amount of computations  due to a large number of optimized 
variables (Ov’sj even if one  uses  the efficient McClellan’s 
program.  There  have  been  some  efforts to accelerate  the 
algorithm  convergence [20], [21]. but  the results  obtained  are 
not sufficient for a real-time  design. 

Given a band-limited  frequency  response, the number of 
variables to be  optimized may  be considerably  reduced by 
applying  the  sampling  theorem in the time or frequency 
domain 171, 181, 1161, 1271, [28], the linear  or  nonlinear 
programming  techniques  being used for  optimizing  the  sample 
values. 

Another  approach  to  reduce the OV number is  taken in [19] 
where  only the passband  Z-transform  roots  are to be found 
by  the parametric  optimization  technique,  while  the  stopband 
roots  are  determined in the  closed  form using the  frequency 
transformations. 

However,  despite  the  relatively small OV number.  these 
design  procedures  remain  rather  time  consuming  due to the 
intrinsic  computation  slowness of the  optimization  techniques 
applied. 

Contrary to this, the proposed  suboptimal  synthesis  tech- 
nique  ingeniously  exploits  the  same efficient McClellan’s 
computer  program [ 181 for the  considerably  reduced OV 
number.  This is accomplished by factorizing CI priori the 
optimized  function, with  the majority of  the stopband  zeros 
prescribed  and  expressed in the  closed  form.  Thus the storage 
and  the  computation  time  are  greatly  gained if compared  to 
the  optimal  synthesis  while  maintaining its generality  and 
flexibility. The detailed  suboptimal  synthesis theory and  some 
practical  design  aspects will be  discussed. 

11. SAW FILTER OPTIMAL DESIGN 

A. Optimal Apprmimution Problem  Formulution und Solution 

The SAW filter to be designed  consists of two  linear 
phase  IDT.  Frequency  response Fl(w) of one of them is 
supposed  to be given U priori while  the  other’s F z ( ~ i )  is 
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optimized  providing  a  Chebyshev  (mini-max)  approximation 
of the  desired  magnitude  shape  function Fo(w). Another  case, 
where  the  filter  consists of two  apodized  IDT  to be optimized, 
is  beyond the  scope of this  paper  and is treated  separately in 

There  are no constraints  on  a  magnitude  shape  function 
Fo(w)  imposed. It may be symmetrical,  nonsymmetrical,  mul- 
tipassband,  etc. [15], [ 171. 

A weighted  error  function AF(u)  can be written in the  form 

[121, [301-[321. 

AF(&j = Wo(~u’)[Fo(w)  - F ( & ) ]  (1) 

where W o ( w )  > 0 is  a  positive-defined  weight  function  and 
the  function 

F ( w )  = E ( w ) F , ( w ) F z ( w )  (2) 

describes  a  linear  phase SAW filter FIR.  Here  the  functions 
F, ( U ) ,  i = 1 , 2 ,  are  attributed to the  IDT  array  factors [22], 
with the  skewing  factor ( ( U )  introduced  to  account  for  the 
IDT  element  factors  [23]-[26]  and/or  the  multistrip  coupler 
FR [23], etc.  For  a  linear  phase IDT, each  array  factor Fi(w) 
is  the cosine or sine trygonometric  polynomial [ l]  of the  order 
n ;  = [ N i / 2 ]  where Ni is a  total  number of  the IDT  acoustical 
sources  (gaps or electrodes). 

The  approximation  problem  can be stated as follows:  given 
a  desired  magnitude  function Fo(w) and a weight  function 
W o ( w ) ,  one  wishes to minimize  the  absolute  weighted  error 
function 

within an approximation  interval R, = {wt[O,w,]} over  the 
set of the  optimized  polynomial F 2 ( w j  coefficients. 

A feature  of the  previous  approximation  problem  is  the 
multiplicative  nature of the  approximating  function F ( w )  
given by ( 2 ) ,  with the  function F l ( w )  sign-alternated in the 
general  case.  Unfortunately,  McClellan’s  computer  program 
[l81 cannot be directly  applied  to  solve  this  problem, with the 
only  exception of a  special  case ( ( w ) F l ( w )  = 1. 

Instead  of  the  initial  problem (1)-(3) let us consider  an 
auxiliary one with an  error  function 

a_F;(w) = sign{Fl(w)}AF(w) = f i ’o(u~)[Fo(w) - ~2(w)I 
(4) 

where 

*,(W) = ~Vo(U‘)(~(w)F1(w)l, ( 5 )  

One must be careful  to  omit in (4)-(6) those  frequencies ic;i 
at which ( ( w ) F l ( w )  = 0. The  function <(W) is usually mono- 
tone  within R,, the  points wi being  zeros of the  sign-alternated 
function F l ( w )  only. At these  frequencies  the  error  function 
A F ( w )  takes  the  fixed  values A F ( w ; )  = Wo(w;)F0(w2) ,  and 
the  approximation  might  fail if the  desired  function Fo(wi) # 
0. Fortunately, if all the  points wi  are  located in a filter 
stopband  where Fo(w) = 0, then  the  error  function 4 F ( w ; )  
is  also  equal  to  zero.  Therefore,  there is no need to minimize 

l 

Fig. 1. Optimal solution error  function A F ( d )  (-) and  the  arrangement 
of  zeros  and  extremuma of the  functions < ( d ) F ~ ( d )  (- - -) and 
F2(*v’) (- - -). 

an error at these  points  and  their  omitting  does  not  influence 
an approximation  accuracy. 

Now the  auxiliary  approximation  problem with the  er- 
ror  function a @ ( ~ )  may be solved on the  subset R, = 
{wt [O:  wr]:  W # w i }  by any  linear  Chebyshev  approximation 
technique [7]-[19]. The  McClellan’s  computer  program [ 181 
can  easily be applied, with the  initial  data  changed  according 
to (5) and (6). 

The  optimal  solution  obtained  has  some  interesting  proper- 
ties that will be discussed in the  following. 

B.  Optimal  Solution  Properties 

Due to the  properties of optirnality and uniqueness,  the  op- 
timal  solution  does not depend on the  optimization  technique 
applied.  be  it  the  Remez  exchange  algorithm  or  the  linear 
programming. 

A  feature of the  optimal  solution  is  the  behavior of the  error 
function AF(w) within a filter stopband  resulting  from (4) 
and from  the  Chebyshev  alternation  theorem [l]. According 
to  this  theorem,  the  error  function A@(w), and  hence,  the 
error  function A F ( w )  must  exhibit on the  subset h, at least 
n2 + 1 equi-ripple  extremuma, with n2 being  the  order of 
the  trigonometric  polynomial Fz(w). On the  other  hand,  the 
maximum  number of the  overall  function F ( u J )  extremuma 
is defined by the  order n = n1 + n 2 _ ,  > n2 of the  poly- 
nomial  product Fl(w)F2(w). It is  the  difference  between  the 
extremuma  number n. and  the  alternation  extremuma  number 
722 that makes it  possible  for  some  extra  extremuma  between 
two neighboring  equi-ripple  alternation  ones  to  appear. 

Indeed,  unlike  the  usual  alternation  law, when two  neighbor 
equi-ripple  extremuma  are  always of the  opposite  signs, it 
follows  from (4) that  two extremuma 1 and 2 (Fig. 1) must 
have  the same sign if an odd-order  real  zero U ,  of the 
function F l ( w )  is placed  between  them.  This  results in an extra 
extremum 3 of the opposite  sign  and of the  lower  amplitude 
to  appear  between  extrernuma 1 and 2 in the  neighborhood of 
the  frequency wi. It is worth noting  that  even-order real zeros 
or complex-valued  roots of the function Fl(w) do not  violate 
the  habitual  alternation  law. 

Besides,  it is such a  special  arrangement of zeros  and 
extremuma of the  functions F, (w)  and F ~ ( w )  in a filter 
stopband  that  ensures,  to  a  large  degree,  a  solution  optimality, 
extremuma  located in the  neighborhood of zeros  and  vice 
versa. 
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Fig. 2. Optimal  synthesis  design  example. (a) Magnitude  response. (b) 
Passband  ripple. (1) Unapodized  IDT  response & [ d ) F ~ ( * t )  (- - -). (2) 
Apodized  IDT  response f i ( ~ . ) F ~ ( d )  (- - -). (3) Overall optimal magnitude 
response <(d)F1 ( d ) F ~ ( u ) ( - ) .  (4) Polynomial product F1 ( d ) F ~ ( . c ' )  (-). 
(5) The skewing factor ((d) (-). 

C. Optimal Synthesis Design Esample 

As an example, the optimal  synthesis  procedure was applied 
to design  a  SAW filter with the -3-dB  fractional  bandwidth of 
25 % and  the -3 /  - 40-dB shape factor of 1.25. The quasi- 
static  approximation [23, eq. (4.97)] was used for the SAW fil- 
ter frequency  response  simulation. The design  results  obtained 
are shown in Fig. 2 where the curves 1 and 2 correspond to the 
unapodized IDT FR JF(JTFl (w)  and the apodized IDT FR 
JF(JTF,(w) respectively,  with the curve  3  being the optimal 
overall  magnitude  response F ( w )  = [ ( w ) F l ( w ) F 2 ( w ) .  For 
clarity, the polynomial  product Fl(w)F2(w) (curve 4) and 
the  skewing  factor [ ( W )  (curve 5 )  are also shown  together 
with the filter passband  ripple (curve 3) in Fig.  2  (b).  The 
function ( ( W )  = wC2(w) comprising the skewing  frequency 
factor W and  the  gap-weighted IDT element  factor ( ( W )  [23, 
eq. (4.96)] for  the  metallization  ratio of 0.5 was accounted for 
within  a filter passband only.  For convenience, the frequency 
characteristics are plotted  versus  a  normalized  frequency W / W O  

where WO is the filter central  frequency. The optimal  solution 
was  obtained using the McClellan's  computer  program [ 181 
after the  variables  substitution ( 3 ,  (6). 

The  IDT  electrode numbers are N I  = 24 and ,V2 = 200, 
respectively. The IDT  synchronism  frequency is UJ, = 2wo 
which corresponds  to both IDT structures with split  electrodes 
1331. 

The optimization  was  performed on the  discrete  frequency 
grid  containing N g  = 943 points with a  discretization  step 

SW = O . l h w ,  Aw = 2wT/lV2 being  the  frequency  sampling 
interval. 

As we  can  see  from  Fig. 2. the out-of-band  attenuation is 
better than -60 dB and the passband peak-to-peak ripple  is 
less  than 0.1 dB. It took 110 iterations  to  obtain an optimal 
solution, the computation  time  being 32 min on a personal 
computer  IBM PC/AT 286 with a  math  co-processor. 

111. SAW FILTER SUBOPTIMAL  SYNTHESIS TECHNIQUE 

A. Suboptimal  Approximation Problem 
Formulation and Solution 

The optimal  solution  described  previously uniquely provides 
the best fit to  a  design  target  within  a  total  approximation 
interval R,. However,  the  most  serious  drawback of the 
optimal  synthesis is an excessive amount of computations.  It 
is very desirable  to find some way to reduce  the OV's number 
7 ~ 2 ,  and hence, the  computation  time  and the memory size 
needed. With this aim the suboptimal  synthesis  technique  was 
elaborated,  which  considerably  reduces  an OV number  without 
significant sacrificing of the  approximation  accuracy. 

The key point of the suboptimal  synthesis  technique pro- 
posed is splitting of the  function F ~ ( w )  into  two  factors 

F2(w) = F 2 ( 4 F 2 ( 4 ,  (7) 

with the  function I p ( w )  fixed and  chosen a priori and the 
function F ~ ( u )  of the  reduced  order < 712 optimized  within 
the approximation  subinterval R C R,. Outside the subinterval 
S2 approximation  accuracy depends mainly on the function 
F2(w)  which must secure a sufficient out-of-band attenua- 
tion.  A  synthesis  technique of such a  wideband  window-type 
function F 2 ( w )  will be discussed  later. 

Rewriting  the  approximating  function F(w)  in the form 

- 

F ( w )  = t ( W ) F l ( w ) p 2 ( 4  (8) 

where F ~ ( u J )  = Fl (w)F2(w) ,  we note  the  function F ( w )  to be 
of the same  structure (2), but with the function F1 ( W )  replaced 
by the  function l l ( w )  and the optimized  function F ~ ( w )  of the 
order 712 replaced by the  function F ~ ( w )  of the  reduced  order 
n 2  < 712. Therefore,  a  suboptimal  approximation  problem with 
the approximating  function (8) can be converted  to an auxiliary 
one and  solved  like the optimal one considered  previously, 
with the order il;? of the optimized  function F2(w)  decreased. 

The Fourier  coefficients of the functions F2(w),  F 2 ( w ) ,  and 
F2(w)  are related via  the  convolution [l] ,  that yields the 
relation 

n2 = T i 2  + n2 - 1. (9) 

The higher the order 112 of the fixed function F2(w) .  the 
lower the order i i 2  of the optimized  function Fz(w) .  Hence, 
it appears  desirable to increase  the order E2 of the function 
F ~ ( w )  until the approximation  accuracy  is  deteriorating. As a 
matter of fact, the suboptimal  solution is inevitably  inferior if 
compared  to the optimal one, but by choosing  judiciously  the 
function F ~ ( w )  the difference  might be made negligible,  with 
the  reduced order function F2(w) optimized. 

- 
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Fig. 3.  Suboptimal  factorization of the  function F L ( ~ ) ( - )  comprisiFg the 
window-type  function F ~ ( ' c ' )  (- - -) and  the  optimized  function F L ( I Z )  
(- - -). (a)  Linear scale  magnitude  response.  (b)  Log  magnitude  response. 

- 

where the elemental  root  factors D,(cp) are  as  follows 

The coefficients 2, of the  function F p ( w )  of the order F2 
could  easily be calculated using the recurrent convolution of 
the elemental  root  factors Di(cp). However,  there  is usually 
no need  to know explicitly the coefficients &, and one 
can  directly  multiply the root factors  (12) in ( I  1) where for 
the rational form representation of the function Fz(p) an 
uncertainty at the singularity  points cp = q i  can be avoided 
by using Lopital's rule. 

The wider the bandwidth Awopt of the optimization subin- 
terval Clopt, the higher the stopband  attenuation of the  function 
F ~ ( w )  and  the closer the  suboptimal  solution  to the optimal 
one. 

The number 7 n  of the  frequency  samples to  be optimized  is 
found  from the simple  relation 

- 

For 7n > 1&15 one can use the following  approximation  for 
the  OV  number gain  estimation 

Thus the function F ~ ( u J )  performs  a  two-fold role: to 
decrease an OV number and to  secure at the same  time  a 
sufficient approximation  accuracy. 

In other words, the gain in the OV number is roughly  propor- 
tional  to the relative bandwidth AwOpt/w, of the optimization 
subinterval Qopt which cannot be narrower  than  a filter total 
passband Rpb, giving the low limit  for the OV number 

B .  Window Function Construction 

Assume the function Fz(w) to be completely defined by 
its Z-transform  roots [ l ]  z ,  = e391 at the frequency  points 
W ;  Rapt allocated  outside  the  optimization  subinterval 
Rpb C Rapt G R of the width AuOpt, where wi = i A w ,  ,i = 
0,1 ,2 ,  -.., with Aw = 2w,/2L; being  the  frequency  sampling 
interval  and RPb defining the filter total passband (Fig. 3). 
Such  a  window-type  function F2(u) forces the frequency 
samples 

Fz(w2) = Fz(wa)F2(wi) (10) 

to be zero outside the optimization  subinterval Clopt, while the 
others at the points witRopt are  optimized. It has  a  bell-like 
magnitude  response, its sidelobes  rapidly  decreasing  outside 

In the  function of the  angle variable p = r w / w K ,  wT being 
a  synchronism frequency, the response P*( p) is  a  Z-transform 
F ~ ( z )  evaluated  on the unit circle L = e jv ,  and all the roots 
zi = eJvl are allocated on this circle. 

Using  Z-transform properties [l] we can derive the follow- 
ing  analytical  expression: 

Oopt. 

- 

reduction. 
As a  rule of thumb, we usually choose the optimization 

subinterval Ropt to be (610) Aw wider  than  a filter total 
passband Rpb (Fig. 3). In turn, the approximation  subinterval 
R might be equal  or (1-2)Au wider than the optimization 
subinterval ROpt C Q. It is a  rapid  sidelobe  attenuation of 
the window  function F 2 ( w )  outside OOpt that secures the 
approximation  accuracy over the total interval R,, to be 
comparable  with  that  obtained within R C R= where  the  error 
function  is  minimized. 

It is  worthy  to note that some  unpredictable  accuracy 
deterioration may arise in the proximity of the approxima- 
tion subinterval O. However,  this  undesirable  error  function 
behavior can be precluded by imposing  the  more  stringent 
specifications on the stopband  attenuation  at the end  points  (or 
at  the  narrow-end segments) of the subinterval Cl (say -70 dB 
instead of the desired -60 dB). 

From the aforementioned, one  can also  conclude  that this is 
virtually an approach to implicitly apply the  McClellan's  com- 
puter  program [ 181 to the frequency  sampling  optimization [l], 
[7]-[lo]  instead of the time  consuming  linear  programming 
technique  commonly  used. 

- 
N Z  - 1 - 

F2($7) = c 2 k e j k '  = I1 Di(9 )  = 
sin +p C. Suboptimal Synthesis Design Emmple 

k=O ut g%,, rId%Enopt Di((P)  For the comparison's sake, it is convenient  to  use  the 
(1 1 )  same design example  as for the optimal synthesis  described 
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Fig. 4. Suboptimal  synthesis  design  example.  (a)  Magnitude  response. (h) 
Passband  ripple. (1) Unapodized  IDT  response d [ d ) F i  (d) (- - -). (2) 
Apodized IDT response &(d)F‘~(d) (-- -). (3)  Overall  optimal  magnitude 
reaponse <(&,)F,(k,)F~(~)( ~ ). (4) Polynomial  product F~(d)Fl(d) 
(-). (S) The  skewing  factor c(-,) (-). 

earlier. The suboptimal FR obtained is plotted in Fig. 4. The 
initial specifications and denominations are the same  as  for 
the optimal synthesis. 

The suboptimal  synthesis  data  are the following. The 
relative  bandwidth of the optimization  subinterval Rapt is 
AwOpt/w, = 25%, with an approximation  subinterval R KZ 

f2,,t. The optimization  was  performed on the frequency  grid 
containing ,Vg = 209 points  as  opposed  to the optimal 
synthesis  where the grid point number was as large as Ng = 
943. 

The IDT  electrode  numbers are the same, N I  = 24 and 
N 2  = 200, but due  to the a priori factorization of the function 
F ~ ( w )  the OV number was decreased  from n2 = 100 to 
712 = 25,  with the number m = 712 of the frequency  samples 
optimized. 

The  detailed  comparison of Figs.  2 and 4 shows that both 
the solutions practically coincide within the  subinterval R; the 
stopband  attenuation and the  passband ripple being -58.9 dB 
and z 0.11  dB  for the suboptimal  synthesis. The difference 
in the approximation  accuracy  for the optimal and suboptimal 
design examples of about 1.3 dB in the filter stopband and of 
less than 0.015 dB in the filter passband  is  quite  negligible 
from the practical point of view. 

It is the OV number  gain & / n 2  = 25% in conjunction 
with a sufficient reduction of the  frequency  grid point number 
N g  that allows the computation  time  to be drastically  reduced 
from 32 min to 15 S only, i.e., more than 125 times. 

IV. CONCLUSION 

The optimal and suboptimal  SAW filter design  techniques 
both based on the McClellan’s computer program [l81 have 
been considered  above. 

Unfortunately,  being of great  theoretical  importance, the 
optimal  synthesis is rather  impracticable for a  real-time  design 
due  to an excessive amount of computations. 

While maintaining optimal synthesis  generality and flexibil- 
ity, the suboptimal  synthesis  technique  allows  a  considerable 
reduction of an OV number,  and  hence the storage and the 
computation  time,  nearly  without sacrificing the approxima- 
tion  accuracy. Usually the difference  between  optimal and 
suboptimal  approximations does not  exceed 1-2 dB  in a filter 
stopband and 0.01-0.05 dB  within  a  passband that is  more 
than  acceptable for practical  design  purposes.  Moreover,  this 
slight discrepancy  might  easily be compensated by a small 
increasing of the apodized IDT electrode  number if one wishes. 

A feature of the suboptimal  synthesis  above  is  that  the 
amount of computations depends  mainly on the filter mag- 
nitude  shape  specifications but not on its center  frequency. 
Consequently, for most  SAW filters the  computation  time  is 
fairly small taking from  some  seconds  to some  minutes on a 
personal  computer IBM PC/AT 286 with a  math  co-processor. 
As a  result,  a  narrowband  fast  cut-off filter synthesis with 
an  electrode  number of several  hundred  and even of sev- 
eral  thousand  becomes  possible due  to dramatic OV  number 
reducing. 

It  is the inherent efficiency of the Remez  exchange algo- 
rithm in conjunction with a  reduced order optimized  function 
that makes the proposed  suboptimal  synthesis  technique very 
attractive one for  a SAW filter computer-aided design. 

The  design experience confirmed fast  convergence,  high 
computation  speed,  reliability, and flexibility of the  suboptimal 
synthesis  technique,  and good agreement  between  theory  and 
experiment  was  obtained within the limits of the model  and 
design  constraints  applied. 
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